摘要:在当前能源危机和全球环境保护的背景下,发展以锂电池为代表的新能源电动汽车(下文简称电动汽车)已成为主要政策。其中,我国宣布将在2035年停售燃油汽车,2050年停止使用燃油汽车。在大政策的背景下,锂电池等一大批支撑新能源的技术迅速发展,我国电动汽车的拥有量也迅速攀升。但由于电动汽车电池自身具有较高的危险性,很容易发生火灾事故。根据应急管理部统计结果显示,2022年季度全国共发生新能源汽车火灾事故640起,同比增长32%,且火灾数量远高于交通工具火灾数量平均增幅。由于电动汽车火灾事故屡发不止,不仅带来了较大的经济财产损失,人民群众的生命安全也受到了较大的威胁。因此,从提高电动汽车火灾灭火救援效率角度出发,为了更好地对电动汽车火灾事故进行救援,本文结合《中国消防年鉴》、事故报告等资料,从2011-2020年间选取了100起典型的电动汽车火灾事故进行统计分析,从中找到事故发生的规律,进而结合消防工作实际提出应对电动汽车火灾事故的策略。
关键词:新能源;火灾风险;安全对策分析
1新能源汽车的概念和火灾风险
由于石油等资源的能源危机和传统汽车工业带来的环境污染问题,发展新能源汽车已成为全球主要经济体共识。当前我国得益于现代高科技进步和新能源战略布局,新能源汽车产业得到发展,拥有广阔的市场前景和发展潜力。
新能源汽车是指“采用新型动力系统,完全或者主要依靠新能源驱动的汽车,包括插电式混合动力(含增程式)汽车、纯电动汽车和燃料电池汽车等”。一般来说,新能源汽车分为纯电动汽车、混合动力电动汽车、燃气汽车、燃烧电池电动汽车和生物燃烧汽车等类型。通过查询中国汽车协会相关统计数据,我国在2016—2018年间的新能源汽车销量分别占全球汽车销量的65.47%,49.03%,62.23%。2018年,我国新能源汽车的销售量达到了125.6万辆,既是全球的新能源汽车消费国,又是全球的新能源汽车制造国。伴随着我国新能源汽车行业的迅猛发展,汽车动力电池也得到了增长和应用。从当前我国新能源汽车市场来看,动力电池从制作原料不同主要分为7种:磷酸铁锂电池、锰酸锂电池、钛酸锂电池、三元材料电池、多元复合电池、镍氢电池、电容器。
通过《新能源汽车蓝皮书:中国新能源汽车产业发展报告(2017)》中发布的相关数据整理而成的2017年我国动力电池总配套量表(见表1)可看出,锂电池的应用领域广,总配套量占据了市场动力电池总配套量的80%以上,是主要的新能源汽车动力电池。
表12017年我国动力电池总配套量
动力电池类别配套量/亿Wh占比/%磷酸铁锂电池203.320072.26锰酸锂电池9.62003.42钛酸锂电池3.14001.12三元材料电池64.470022.91多元复合电池0.59000.21镍氢电池0.22000.08电容器0.0012<0.01
新能源汽车的普及给人们带来*大的便利,但伴随而来的动力电池(以锂电池为主)引发的火灾已成为产业关注的焦点和亟须正视的安全问题。在我国,根据不完全数据统计,新能源汽车起火引发的事故在2017—2018年超过60起,2019年超过70起,2020—2022年更是呈猛烈上升趋势。
2新能源汽车火灾成因及隐患分析
由于近些年来频发的以锂电池为主要动力的新能源汽车安全和火灾事故,危害了人们的生命财产安全,因此对新能源汽车及其动力锂电池安全性问题的研究十分有必要。在进行新能源汽车火灾风险隐患分析之前,对新能源汽车主体结构和锂电池原理构造的了解和认识是重要前提和基础。
新能源汽车主要指以锂电池为动力源的纯电动汽车,其主要由电源控制系统、电力驱动系统和辅助系统组成,具体见图1。
图1新能源汽车的结构示意图
锂电池主要由正*、负*、隔膜和电解液(电解质和有机溶剂结合)组成,正负两*浸润在电解液中,Li+以电解质为介质从而在正负两*之间运动,实现电池的充放电过程。并且,为了避免正负*通过电解液发生短路问题,生产时需要用隔膜将锂电池的正负两*进行分隔。具体来说,锂电池的工作原理见图2,在充放电过程中,Li+在两个正负电*之间往返嵌入和脱嵌;充电时,Li+从正*脱嵌,并经过非水电解质嵌入到负*中,而使负*处于富Li+状态,放电时过程刚好相反。通过对锂电池的原理和构造分析可以看出,锂电池的高能量储存与释放都是在一个狭小的空间内完成。为了提高锂电池的单位储能效应,锂电池研发和生产商们都会尽可能得压缩锂离子的传送空间(即隔膜)。因此通常提高锂离子电池效能的直接方法就是减少隔膜的厚度,从而使电池内Li+的狭小空间愈发狭小。但愈发薄的隔膜会增加正负两*直接接触从而造成短路的风险,从而更易造成短路引发火灾甚至爆炸,这就是人们通常所说的“热失控”。此外,锂电池除正常充放电电化学反应之外,存在的一些副反应也会产热。
图2锂离子电池工作原理示意图
2.1汽车锂电池火灾危害性
虽然锂电池具备一系列良好的使用性能和优势,并且在新能源汽车行业中得到了广泛的应用,但同时也存在燃烧和爆炸的风险。由锂电池引发的汽车火灾表现出显著的气体火特征,主要为C类预混火。汽车锂电池火灾通常具有以下区别于一般火灾的特点和危害。
1)燃烧速度快,锂电池火灾容易造成蔓延。
2)锂电池燃烧爆炸会产生可燃有害气体,毒性大。
3)燃烧爆炸产生的火焰喷射距离远,常伴内溶物的飞出和溅射,加大了起火爆炸的危害度。
4)锂电池的燃烧热值大,灭火难,存在复燃风险。
5)汽车锂电池起火,对周边物体易造成较大的危害并存在爆炸风险。
2.2汽车锂电池火灾风险因素分析
新能源汽车上使用的锂电池都是通过串并联成组工作,如果单个电池组发生热失控后,局部释放产生的能量就会向周围扩散传播,*大可能引起周围电池的热失控,数千颗电芯间连锁反应,容易造成电池组的起火爆炸,释放出巨大的能量。因此在*端情况下,锂电池的一个小故障就很有可能造成大灾难。造成锂电池热失控的因素可分为内外部因素,内部因素主要有电池本身存在制造缺陷和工艺不足;外部因素主要有机械滥用、高温热冲击、短路、过充电等。更详细来说,造成新能源汽车锂电池起火燃烧爆炸的原因可分为4种:电池过充电、外部短路、内部短路、机械碰撞。
总结来说,由锂电池引发的汽车火灾安全隐患问题主要原因就是锂电池本身存在的产品质量问题和工艺缺陷。
3安全对策
面对着日益增长的新能源汽车火灾事故,如何降低火灾风险,提高新能源汽车安全使用率成为当下亟须解决的重要问题。而且,工业和信息化部、改革委员会、科学技术部、财政部联合发布的《促进汽车动力电池产业发展行动方案》里也提出:“大幅提升产品安全和质量水平”的基本原则,“产品设计和系统集成满足功能安全要求,实现全生命周期的安全生产和使用”的主要目标,“提升产品质量安全水平”的任务。因此,笔者立足国内新能源汽车火灾隐患现状并结合国外应对新能源汽车消防安全的措施,提出解决我国新能源汽车火灾风险的安全对策。
3.1方面
1)管理部门,出台更为科学严格的锂电池生产规范和安全标准。设定新能源汽车安全生产的准入门槛,提高安全生产标准,强化对新能源汽车从生产到使用再到报废的闭环式管理。尽快出台新能源汽车更为细致的规范和法律条文,让企业、消费者、执法部门等做到有规可循、有法可依。
2)消防部门,制定科学有效的灭火方案。新能源汽车火灾具有特殊危害性,有针对性地进行现场指挥和处理,科学开展灭火救援行动,并做好以下4个方面的工作:一是了解灾情,规避风险;二是疏散人群,防止毒害;三是科学选择灭火剂,防止复燃;四是做好善后工作,总结经验。
3.2企业方面
新能源汽车的安全问题,预防为先。提升新能源汽车的锂电池产品质量安全,是预防新能源汽车火灾的基石。
1)设计阶段,优化锂电池设计,保障锂电池产品质量。企业在设计阶段应科学设计,在改善锂电池材料和优化内部性能的同时,将安全、可靠、稳定的理念融入其中。
2)生产阶段,严控锂电池产品质量。企业是锂电池和新能源汽车的一道“守护门”,不可盲目追求利润而忽视产品质量安全。
3)销售阶段,可与地方经销商合作,做好对消费者关于新能源汽车安全使用的认知、宣传和培训。
4)售后阶段,企业可与消费者、维护商家进行合作,定期为新能源汽车及其电池进行保养和维护,提醒消费者定期做安全检查,保障新能源汽车安全使用。
3.3消费者方面
一是安全规范使用新能源汽车;二是注意车辆保养和日常维护;三是培养安全防范意识。
4强化灭火救援的对策
电动汽车火灾事故历年来屡见不鲜。上文总结了电动汽车火灾事故发生的特点等,本章将结合上文和灭火战斗原则等,就强化电动汽车灭火救援提出相应对策。
4.1提高电动汽车火灾事故的灭火战斗意识
出动力量的到达时间将很大影响灭火战斗的效率。从前文可以看出,每日的凌晨00:00到00:06之间是电动汽车火灾的高发时间段。而此时段也是消防救援人员普遍休息的时间段。对于消防站出警,都应该形成一种强烈的意识,发生的居民火灾是否是电动汽车火灾事故,只有如此才能在到达现场之前迅速的转换意识,提前布局,提高行动效率。落实到实际工作中,作者认为,一是应该在电动汽车火灾多发季节的晚点名或晚上装备检查时,就电动汽车灭火战斗事宜进行强调,提高大家的思想意识;二是就灭火装备进行检查,提习惯性动作,便于到达现场迅速展开。
4.2充分利用灭火器
较多电动汽车火灾虽然烟气量较大,但火势可能不大。因此,快速、有效的方法还是利用干粉灭火器。消防车都配备了干粉灭火器。消防员到达现场后,应该首先携带干粉灭火器扑灭火源;如果火势形成一定规模,应该铺设水带,使用多支水枪进行灭火。
4.3强化面对新形式火灾的灭火战斗教育培训
教育培训体现在,一是从上层建筑出发,组织专人多学习全国成功的灭火救援案例,找到成功的经验,针对一些不足,有针对性的进行训练和演练,摸索出经验和成果后向全省或全市进行推广;二是要走出去和请进来,所谓走出去是指,电动汽车日新月异,许多方面还是我们所不熟悉的,我们要善于走出去,到地方企业或生产基地去实地查看,观摩他们的生产过程,结合我们的灭火战斗实际经历形成自己的思考;所谓请进来是指,我们可以请企业的工程师来给我们授课,讲解产品的火灾危险性,火灾性质,如何扑灭等知识。多交流多走动形成良好的状态,既提高了企业的消防水平,也提高了我们的作战行动效率,更保障了消防救援人员的安全。
4.4警惕发展成为成片电动汽车火灾
目前,许多地方都设有电动汽车停车棚,实行电动汽车统一存放,*大的避免了人员伤亡案例的出现。然而,有些相关火灾案例显示单个电动汽车着火*易发展成为成片电动汽车火灾,并且伴有爆燃危险。这种火灾发展*快,当消防队到达现场后火势已经发展成熟。因此,作者认为我们到达现场的首要任务应该是防止火焰蔓延。
5安科瑞电气火灾监控系统
(1)概述
Acre1-6000电气火灾监控系统,是根据现行规范标准由安科瑞电气股份有限公司研发的全数字化独立运行的系统,已通过消防电子产品质量监督检验*心的消防电子产品试验认证,并且均通过严格的EMC电磁兼容试验,保证了该系列产品在低压配电系统中的安全正常运行,现均已批量生产并在全国得到广泛的应用。该系统通过对剩余电流、过电流、过电压、温度和故障电弧等信号的采集与监视,实现对电气火灾的早期预防和报警,当必要时还能联动切除被检测到剩余电流、温度和故障电弧等超标的配电回路;并根据用户的需求,还可以满足与AcreIEMS企业微电网管理云平台或火灾自动报警系统等进行数据交换和共享。
(2)应用场合
适用于智能楼宇、高层公寓、宾馆、饭店、商厦、工矿企业、消防单位以及石油化工、文教卫生、金融、电信等领域。
(3)系统结构
(4)系统功能
监控设备能接收多台探测器的剩余电流、温度信息,报警时发出声、光报警信号,同时设备上红色“报警”指示灯亮,显示屏指示报警部位及报警类型,记录报警时间,声光报警一直保持,直至按设备的“复位”按钮或触摸屏的“复位”按键远程对探测器实现复位。对于声音报警信号也可以使用触摸屏“消声”按键手动消除。
当被监测回路报警时,控制输出继电器闭合,用于控制被保护电路或其他设备,当报警消除后,控制输出继电器释放。
通讯故障报警:当监控设备与所接的任一台探测器之间发生通讯故障或探测器本身发生故障时,监控画面中相应的探测器显示故障提示,同时设备上的黄色“故障”指示灯亮,并发出故障报警声音。电源故障报警:当主电源或备用电源发生故障时,监控设备也发出声光报警信号并显示故障信息,可进入相应的界面查看详细信息并可解除报警声响。
当发生剩余电流、超温报警或通讯、电源故障时,将报警部位、故障信息、报警时间等信息存储在数据库中,当报警解除、排除故障时,同样予以记录。历史数据提供多种便捷、快速的查询方法。
(5)(5)配置方案
(5)配置方案
应用场合型号产品照片功能消防控制室Acrel-6000/B
适用于1~4条通信总线可连接256个探测器,可适用于壁挂安装的场所。Acrel-6000/Q
适用于大型组网,壁挂式监控主机数量较多且需集中查看的场所,主要监测壁挂主机信息。 一、二级
低压配电ARCM200L-Z2
三相(I、U、kW、Kvar、kWh、Kvarh、Hz、cos中),视在电能、四象限电能计量,单回路剩余电流监测,4路温度监测,2路继电器输出,4路开关量输入,事件记录,内置时钟,点阵式LCD显示,2路独立RS485/Modbus通讯ARCM200L-J88路剩余电流监测,2路继电器输出,4路开关量输入,事件记录,内置时钟,点阵式LCD显示,1路RS485/Modbus通讯 ARCM300-J1
1路剩余电流监测,4路温度监测,1路继电器输出,事件记录,LCD显示,1路RS485/Modbus通讯 AAFD-□
检测末端线路的故障电弧,485通讯,导轨式安装。 ASCP200-□
短路限流保护、过载保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测,1路RS485通讯,1路GPRS或NB无线通讯,额定电流为0-40A可设。
短路限流保护、过载保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测,1路RS485通讯,1路NB或4G无线通讯,额定电流为0-63A可设。 配套附件AKH-0.66
测量型互感器,采集交流电流信号AKH-0.66/L
剩余电流互感器,采集剩余电流信号 ARCM-NTC
温度传感器,采集线缆或配电箱体温度
应用场合型号产品照片功能消防控制室Acrel-6000/B
适用于1~4条通信总线可连接256个探测器,可适用于壁挂安装的场所。Acrel-6000/Q
适用于大型组网,壁挂式监控主机数量较多且需集中查看的场所,主要监测壁挂主机信息。 一、二级
低压配电ARCM200L-Z2
三相(I、U、kW、Kvar、kWh、Kvarh、Hz、cos中),视在电能、四象限电能计量,单回路剩余电流监测,4路温度监测,2路继电器输出,4路开关量输入,事件记录,内置时钟,点阵式LCD显示,2路独立RS485/Modbus通讯ARCM200L-J88路剩余电流监测,2路继电器输出,4路开关量输入,事件记录,内置时钟,点阵式LCD显示,1路RS485/Modbus通讯 ARCM300-J1
1路剩余电流监测,4路温度监测,1路继电器输出,事件记录,LCD显示,1路RS485/Modbus通讯 AAFD-□
检测末端线路的故障电弧,485通讯,导轨式安装。 ASCP200-□
短路限流保护、过载保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测,1路RS485通讯,1路GPRS或NB无线通讯,额定电流为0-40A可设。
短路限流保护、过载保护、内部超温限流保护、过欠压保护、漏电监测、线缆温度监测,1路RS485通讯,1路NB或4G无线通讯,额定电流为0-63A可设。 配套附件AKH-0.66
测量型互感器,采集交流电流信号AKH-0.66/L
剩余电流互感器,采集剩余电流信号 ARCM-NTC
温度传感器,采集线缆或配电箱体温度
6总结
随着我国对新能源汽车行业的战略布局和人们日益增长的绿色出行需求,新能源汽车正朝着高质量和高产量的方向快速发展。新能源汽车的大规模普及对人们日常生活产生了巨大影响,伴随而来的安全问题不容忽视。确保新能源汽车安全使用、防范新能源汽车火灾风险将成为汽车行业和消防安全领域的一个重要话题和热点。科学分析新能源汽车火灾风险,加强新能源汽车火灾安全对策分析,对促进新能源汽车高质量发展、保障人民生命和财产安全和构建新时代中国特色社会主义和谐社会有着重要意义。